492 research outputs found

    Density Driven Diffusion

    Full text link
    In this work we derive a novel density driven diffusion scheme for image enhancement. Our approach, called D3, is a semi-local method that uses an initial structure-preserving oversegmentation step of the input image.  Because of this, each segment will approximately conform to a homogeneous region in the image, allowing us to easily estimate parameters of the underlying stochastic process thus achieving adaptive non-linear filtering. Our method is capable of producing competitive results when compared to state-of-the-art methods such as non-local means, BM3D and tensor driven diffusion on both color and grayscale images.VIDIGARNICSBILDLA

    Non-universality of elastic exponents in random bond-bending networks

    Full text link
    We numerically investigate the rigidity percolation transition in two-dimensional flexible, random rod networks with freely rotating cross-links. Near the transition, networks are dominated by bending modes and the elastic modulii vanish with an exponent f=3.0\pm0.2, in contrast with central force percolation which shares the same geometric exponents. This indicates that universality for geometric quantities does not imply universality for elastic ones. The implications of this result for actin-fiber networks is discussed.Comment: 4 pages, 3 figures, minor clarifications and amendments. To appear in PRE Rap. Com

    Transition from damage to fragmentation in collision of solids

    Full text link
    We investigate fracture and fragmentation of solids due to impact at low energies using a two-dimensional dynamical model of granular solids. Simulating collisions of two solid discs we show that, depending on the initial energy, the outcome of a collision process can be classified into two states: a damaged and a fragmented state with a sharp transition in between. We give numerical evidence that the transition point between the two states behaves as a critical point, and we discuss the possible mechanism of the transition.Comment: Revtex, 12 figures included. accepted by Phys. Rev.

    Scaling of impact fragmentation near the critical point

    Full text link
    We investigated two-dimensional brittle fragmentation with a flat impact experimentally, focusing on the low impact energy region near the fragmentation-critical point. We found that the universality class of fragmentation transition disagreed with that of percolation. However, the weighted mean mass of the fragments could be scaled using the pseudo-control parameter multiplicity. The data for highly fragmented samples included a cumulative fragment mass distribution that clearly obeyed a power-law. The exponent of this power-law was 0.5 and it was independent of sample size. The fragment mass distributions in this regime seemed to collapse into a unified scaling function using weighted mean fragment mass scaling. We also examined the behavior of higher order moments of the fragment mass distributions, and obtained multi-scaling exponents that agreed with those of the simple biased cascade model.Comment: 6 pages, 6 figure

    Reactive control of autonomous drones

    Get PDF
    Aerial drones, ground robots, and aquatic rovers enable mobile applications that no other technology can realize with comparable flexibility and costs. In existing platforms, the low-level control enabling a drone's autonomous movement is currently realized in a time-triggered fashion, which simplifies implementations. In contrast, we conceive a notion of reactive control that supersedes the time-triggered approach by leveraging the characteristics of existing control logic and of the hardware it runs on. Using reactive control, control decisions are taken only upon recognizing the need to, based on observed changes in the navigation sensors. As a result, the rate of execution dynamically adapts to the circumstances. Compared to time-triggered control, this allows us to: i) attain more timely control decisions, ii) improve hardware utilization, iii) lessen the need to overprovision control rates. Based on 260+ hours of real-world experiments using three aerial drones, three different control logic, and three hardware platforms, we demonstrate, for example, up to 41% improvements in control accuracy and up to 22% improvements in flight time

    Modularity in signaling systems

    Get PDF
    Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control system theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems being constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications

    Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines

    Get PDF
    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at individual level (diversity of topics related to the researcher) and at social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On

    Automatic Control of Gene Expression in Mammalian Cells

    Full text link
    • …
    corecore